Keynote by Soumith Chintala

PyTorch: a framework for fast, dynamic deep learning and scientific computing

Short summary

In this session, you shall be introduced to a new framework for scientific computing, mainly aimed at deep learning workloads. The framework consists of an ndarray library that natively supports GPU execution, an automatic differentiation engine that is flexible and fast, and an optimization package for gradient based optimization methods. We shall discuss practical workflows, our features on top of python multiprocessing for efficient parallel data loaders and finally we shall briefly look at our upcoming just-in-time Tensor compiler to fuse computations and execute them more efficiently.

Biographical sketch

Soumith Chintala is a Researcher at Facebook AI Research, where he works on deep learning, reinforcement learning, generative image models, agents for video games and large-scale high-performance deep learning. Prior to joining Facebook in August 2014, he worked at MuseAmi, where he built deep learning models for music and vision targeted at mobile devices. He holds a Masters in CS from NYU, and spent time in Yann LeCun's NYU lab building deep learning models for pedestrian detection, natural image OCR, depth-images among others.

(Reproduced from